Создание методов в c#. Классы и методы. Возврат из метода и возврат значения

Работа и мощность при вращении твердого тела.

Найдем выражение для работы при вращении тела. Пусть сила приложена в точке , находящейся от оси на расстоянии , - угол между направлением силы и радиус-вектором . Так как тело абсолютно твердое, то работа этой силы равна работе, затраченной на поворот всего тела. При повороте тела на бесконечно малый угол точка приложения проходит путь и работа равна произведению проекции силы на направление смещения на величину смещения:

Модуль момента силы равен:

тогда получим следующую формулу для вычисления работы:

Таким образом, работа при вращении твердого тела равна произведению момента действующей силы на угол поворота.

Кинетическая энергия вращающегося тела.

Моментом инерции мат.т. наз. физ. величина численно равная произведению массы мат.т. на квадрат расстояния этой точки до оси вращения.W ki =m i V 2 i /2 V i -Wr i Wi=miw 2 r 2 i /2 =w 2 /2*m i r i 2 I i =m i r 2 i момент инерции твердого тела равен сумме всех мат.т I=S i m i r 2 i моментом инерции твердого тела наз. физ.величина равная сумме произведений мат.т. на квадраты расстояний от этих точек до оси. W i -I i W 2 /2 W k =IW 2 /2

W k =S i W ki момент инерции при вращательном движении явл. аналогом массы при поступательном движении. I=mR 2 /2

21.Неинерциальные системы отсчёта. Силы инерции. Принцип эквивалентности. Уравнение движения в неинерциальных системах отсчёта.

Неинерциальная система отсчёта - произвольная система отсчёта, не являющаяся инерциальной. Примеры неинерциальных систем отсчета: система, движущаяся прямолинейно с постоянным ускорением, а также вращающаяся система.

При рассмотрении уравнений движения тела в неинерциальной системе отсчета необходимо учитывать дополнительные силы инерции. Законы Ньютона выполняются только в инерциальных системах отсчёта. Для того чтобы найти уравнение движения в неинерциальной системе отсчёта, нужно знать законы преобразования сил и ускорений при переходе от инерциальной системы к любой неинерциальной.

Классическая механика постулирует следующие два принципа:

время абсолютно, то есть промежутки времени между любыми двумя событиями одинаковы во всех произвольно движущихся системах отсчёта;

пространство абсолютно, то есть расстояние между двумя любыми материальными точками одинаково во всех произвольно движущихся системах отсчёта.

Эти два принципа позволяют записывать уравнение движения материальной точки относительно любой неинерциальной системы отсчёта, в которой не выполняется Первый закон Ньютона.

Основное уравнение динамики относительного движения материальной точки имеет вид:

где - масса тела, - ускорение тела относительно неинерциальной системы отсчёта, - сумма всех внешних сил, действующих на тело, - переносное ускорение тела, - Кориолисово ускорение тела.

Это уравнение может быть записано в привычной форме Второго закона Ньютона, если ввести фиктивные силы инерции:

Переносная сила инерции

Сила Кориолиса

Сила инерции - фиктивная сила, которую можно ввести в неинерциальной системе отсчёта так, чтобы законы механики в ней совпадали с законами инерциальных систем.

В математических вычислениях введения этой силы происходит путём преобразования уравнения

F 1 +F 2 +…F n = ma к виду

F 1 +F 2 +…F n –ma = 0 Где F i - реально действующая сила, а –ma - «сила инерции».

Среди сил инерции выделяют следующие:

простую силу инерции;

центробежную силу, объясняющую стремление тел улететь от центра во вращающихся системах отсчёта;

силу Кориолиса, объясняющую стремление тел сойти с радиуса при радиальном движении во вращающихся системах отсчёта;

С точки зрения общей теории относительности, гравитационные силы в любой точке - это силы инерции в данной точке искривлённого пространства Эйнштейна

Центробежная сила - сила инерции, которую вводят во вращающейся (неинерциальной) системе отсчёта (чтобы применять законы Ньютона, рассчитанные только на инерциальные СО) и которая направлена от оси вращения (отсюда и название).

Принцип эквивалентности сил гравитации и инерции - эвристический принцип, использованный Альбертом Эйнштейном при выводе общей теории относительности. Один из вариантов его изложения: «Силы гравитационного взаимодействия пропорциональны гравитационной массе тела, силы инерции же пропорциональны инертной массе тела. Если инертная и гравитационная массы равны, то невозможно отличить, какая сила действует на данное тело - гравитационная или сила инерции.»

Формулировка Эйнштейна

Исторически, принцип относительности был сформулирован Эйнштейном так:

Все явления в гравитационном поле происходят точно так же как в соответствующем поле сил инерции, если совпадают напряжённости этих полей и одинаковы начальные условия для тел системы.

22.Принцип относительности Галилея. Преобразования Галилея. Классическая теорема сложения скоростей. Инвариантность законов Ньютона в инерциальных системах отсчёта.

Принцип относительности Галилея – это принцип физического равноправия инерциальных систем отсчёта в классической механике, проявляющегося в том, что законы механики во всех таких системах одинаковы.

Математически принцип относительности Галилея выражает инвариантность (неизменность) уравнений механики относительно преобразований координат движущихся точек (и времени) при переходе от одной инерциальной системы к другой - преобразований Галилея.
Пусть имеются две инерциальные системы отсчёта, одну из которых, S, условимся считать покоящейся; вторая система, S", движется по отношению к S с постоянной скоростью u так, как показано на рисунке. Тогда преобразования Галилея для координат материальной точки в системах S и S" будут иметь вид:
x" = x - ut, у" = у, z" = z, t" = t (1)
(штрихованные величины относятся к системе S", нештрихованные - к S). Т. о., время в классической механике, как и расстояние между любыми фиксированными точками, считается одинаковым во всех системах отсчёта.
Из преобразований Галилея можно получить соотношения между скоростями движения точки и её ускорениями в обеих системах:
v" = v - u, (2)
a" = a.
В классической механике движение материальной точки определяется вторым законом Ньютона:
F = ma, (3)
где m - масса точки, a F - равнодействующая всех приложенных к ней сил.
При этом силы (и массы) являются в классической механике инвариантами, т. е. величинами, не изменяющимися при переходе от одной системы отсчёта к другой.
Поэтому при преобразованиях Галилея уравнение (3) не меняется.
Это и есть математическое выражение Галилеева принципа относительности.

ПРЕОБРАЗОВАНИЯ ГАЛИЛЕЯ.

В кинематике все системы отсчета равноправны между собой и движение можно описывать в любой из них. При исследовании движений иногда приходится переходить от одной системы отсчета (с координатной системой ОХУZ) к другой - (О`Х`У`Z`). Рассмотрим случай, когда вторая система отсчета движется относительно первой равномерно и прямолинейно со скоростью V=соnst.

Для облегчения математического описания предположим, что соответствующие оси координат параллельны друг другу, что скорость направлена вдоль оси Х, и что в начальный момент времени (t=0) начала координат обеих систем совпадали друг с другом. Используя справедливое в классической физике допущение об одинаковом течении времени в обеих системах, можно записать соотношения, связывающие координаты некоторой точки А(х,у,z) и А (х`,у`,z`) в обеих системах. Такой переход от одной системы отсчета к другой носит название преобразований Галилея):

ОХУZ О`Х`У`Z`

х = х` + V x t х` = х - V x t

x = v` x + V x v` x = v x - V x

a x = a` x a` x = a x

Ускорение в обеих системах одинаково (V=соnst). Глубокий смысл преобразований Галилея будет выяснен в динамике. Преобразование скоростей Галилея отражает имеющий место в классической физике принцип независимости перемещений.

Сложение скоростей в СТО

Классический закон сложения скоростей не может быть справедлив, т.к. он противоречит утверждению о постоянстве скорости света в вакууме. Если поезд движется со скоростью v и в вагоне в направлении движения поезда распространяется световая волна, то ее скорость относительна Земли все равно c , а не v + c .

Рассмотрим две системы отсчета.

В системе K 0 тело движется со скоростью v 1 . Относительно же системы K оно движется со скоростью v 2 . Согласно закону сложения скоростей в СТО:

Если v << c и v 1 << c , то слагаемым можно пренебречь, и тогда получим классический закон сложения скоростей: v 2 = v 1 + v .

При v 1 = c скорость v 2 равна c , как этого требует второй постулат теории относительности:

При v 1 = c и при v = c скорость v 2 вновь равна скорости c .

Замечательным свойством закона сложения является то, что при любых скоростях v 1 и v (не больше c ), результирующая скорость v 2 не превышает c . Скорость движения реальных тел больше, чем скорость света, невозможна.

Сложение скоростей

При рассмотрении сложного движения (то есть когда точка или тело движутся в одной системе отсчёта, а она движется относительно другой) возникает вопрос о связи скоростей в 2 системах отсчёта.

Классическая механика

В классической механике абсолютная скорость точки равна векторной сумме её относительной и переносной скоростей:

Простым языком: Скорость движения тела относительно неподвижной системы отсчёта равна векторной сумме скорости этого тела относительно подвижной системы отсчета и скорости самой подвижной системы отсчета относительно неподвижной системы.

При повороте твердого тела, имеющего ось вращения z, под воздействием момента силы M z относительно оси z совершается работа

Полная работа при повороте на угол j равна

При постоянном моменте сил последнее выражение принимает вид:

Энергия

Энергия - мера способности тела совершить работу. Движущиеся тела обладают кинетической энергией. Поскольку существуют два основных вида движения - поступательное и вращательное, то кинетическая энергия представлена двумя формулами - для каждого вида движения. Потенциальная энергия - энергия взаимодействия. Убыль потенциальной энергии системы происходит вследствие работы потенциальных сил. Выражения для потенциальной энергии сил тяготения, тяжести и упругости, а также для кинетической энергии поступательного и вращательного движений приведены на схеме. Полная механическая энергия является суммой кинетической и потенциальной.


Импульс и момент импульса

Импульсом частицы p называется произведение массы частицы и ее скорости:

Моментом импульса L относительно точки О называется векторное произведение радиус-вектора r , определяющего положение частицы, и ее импульса p :

Модуль этого вектора равен:

Пусть твердое тело имеет неподвижную ось вращения z , вдоль которой направлен псевдовектор угловой скорости w .


Таблица 6

Кинетическая энергия, работа, импульс и момент импульса для различных моделей объектов и движений

Идеальная Физические величины
модель Кинетическая энергия Импульс Момент импульса Работа
Материальная точка или твердое тело, движущееся поступательно. m - масса, v - скорость. , . При
Твердое тело вращается с угловой скоростью w. J - момент инерции, v c - скорость движения центра масс. . При
Твердое тело совершает сложное плоское движение. J ñ - момент инерции относительно оси, проходящей через центр масс, v c - скорость движения центра масс. w-угловая скорость.

Момент импульса вращающегося твердого тела совпадает по направлению с угловой скоростью и определяется как

Определения этих величин (математические выражения) для материальной точки и соответствующие формулы для твердого тела при различных формах движения приведены в таблице 4.

Формулировки законов

Теорема о кинетической энергии

частицы равно алгебраической сумме работ всех сил, действующих на частицу.

Приращение кинетической энергии системы тел равно работе, которую совершают все силы, действующих на все тела системы:

. (1)

Если м.т. вращается по окружности, то на нее действует сила , то при повороте на некоторый угол совершается элементарная работа:

(22)

Если действующая сила является потенциальной, то

тогда (24)

Мощность при вращении

Мгновенная мощность, развиваемая при вращении тела:

Кинетическая энергия вращающегося тела

Кинетическая энергия материальной точки . Кинетическая энергия sis материальных точек . Т.к. , получим выражение кинетической энергии вращения:

При плоском движении (цилиндр скатывается по наклонной плоскости) полная скорость равна:

где - скорость центра масс цилиндра.

Полная равна сумме кинетической энергии поступательного движения его центра масс и кинетической энергии вращательного движения тела относительно центра масс, т.е.:

(28)


Заключение:

А теперь, рассмотрев весь лекционный материал, подведем итог, сопоставим величины и уравнения вращательного и поступательного движения тела:

Поступательное движение Вращательное движение
Масса m Момент инерции I
Путь S Угол поворота
Скорость Угловая скорость
Импульс Момент импульса
Ускорение Угловое ускорение
Равнодействующая внешних сил F Сумма моментов внешних сил M
Основное уравнение динамики Основное уравнение динамики
Работа Fds Работа вращения
Кинетическая энергия Кинетическая энергия вращения

Приложение 1:

Человек стоит в центре скамьи Жуковского и вместе с ней вращается по инерции. Частота вращения n 1 =0,5 c -1 . Момент инерции j o тела человека относи-

тельно оси вращения равен 1,6 кг м 2 . В вытянутых в стороны руках человек держит по гире массой m =2 кг каждая. Расстояние между гирями l 1 =l,6 м. Опре­делить частоту вращения n 2 , скамьи с человеком, когда он опустит руки и расстояние l 2 между гирями станет равным 0,4 м. Моментом инерции скамьи пренебречь.

Свойства симметрии и законы сохранения.

Сохранение энергии.

В основе законов сохранения, рассматриваемых в механике, лежат свойства пространства и времени.

Сохранение энергии связано с однородностью времени, сохранение импульса – с однородностью пространства и, наконец, сохранение момента импульса находится в связи с изотропией пространства.

Начинаем с закона сохранения энергии. Пусть система частиц находится в неизменных условиях(это имеет место если система замкнута или подвержена воздействию постоянного внешнего силового поля); связи(если они есть) идеальны и стационарны. В этом случае время в силу своей однородности не может входить явно в функцию Лагранжа. Действительно однородность означает равнозначность всех моментов времени. Поэтому замена одного момента времени другим без изменения значений координат и скоростей частиц не должна изменять механические свойства системы. Это конечно справедливо в том случае, если замена одного момента времени другим не изменяет условий, в которых находится система, то есть в случае независимости от времени внешнего поля(в частности это поле может отсутствовать).

Итак для замкнутой системы находящейся в замкнутом силовом поле, .

Для кинематического описания процесса вращения твердого тела нужно ввести такие понятия как угловое перемещение Δ φ , угловое ускорение ε и угловая скорость ω :

ω = ∆ φ ∆ t , (∆ t → 0) , ε = ∆ φ ∆ t , (∆ t → 0) .

Углы выражаются в радианах. За положительное направление вращения принимается направление против часовой стрелки.

Когда твердое тело вращается относительно неподвижной оси, все точки этого тела перемещаются с одинаковыми угловыми скоростями и ускорениями.

Рисунок 1. Вращение диска относительно оси, проходящей через его центр O .

Если угловое перемещение Δ φ мало, то модуль вектора линейного перемещения ∆ s → некоторого элемента массы Δ m вращающегося твердого тела можно выразить соотношением:

∆ s = r ∆ ϕ ,

в котором r – модуль радиус-вектора r → .

Между модулями угловой и линейной скоростей можно установить связь посредством равенства

Модули линейного и углового ускорения также взаимосвязаны:

a = a τ = r ε .

Векторы v → и a → = a τ → направлены по касательной к окружности радиуса r .

Также нам необходимо учесть возникновение нормального или центростремительного ускорения, которое всегда возникает при движении тел по окружности.

Определение 1

Модуль ускорения выражается формулой:

a n = v 2 r = ω 2 r .

Если разделить вращающееся тело на небольшие фрагменты Δ m i , обозначить расстояние до оси вращения через r i , а модули линейных скоростей через v i , то запись формулы кинестетической энергии вращающегося тела будет иметь вид:

E k = ∑ i ν m v i 2 2 = ∑ i ∆ m (r i ω) 2 2 = ω 2 2 ∑ i ∆ m i r i 2 .

Определение 2

Физическая величина ∑ i ∆ m i r i 2 носит название момента инерции I тела относительно оси вращения. Она зависит от распределения масс вращающегося тела относительно оси вращения:

I = ∑ i ∆ m i r i 2 .

В пределе при Δ m → 0 эта сумма переходит в интеграл. Единица измерения момента инерции в С И – килограмм- метр в квадрате (к г · м 2) . Таким образом, кинетическую энергию твердого тела, вращающегося относительно неподвижной оси, можно представить в виде:

E k = I ω 2 2 .

В отличие от выражения, которое мы использовали для описания кинестетической энергии поступательно движущегося тела m v 2 2 , вместо массы m в формулу входит момент инерции I . Также мы принимаем во внимание вместо линейной скорости v угловую скорость ω .

Если для динамики поступательного движения основную роль играет масса тела, то в динамике вращательного движения имеет значение момент инерции. Но если масса – это свойство рассматриваемого твердого тела, которое не зависит от скорости движения и других факторов, то момент инерции зависит от того, вокруг какой оси вращается тело. Для одного и того же тела момент инерции будет определяться различными осями вращения.

В большинстве задач считается, что ось вращения твердого тела проходит через центр его массы.

Положение x C , y C центра масс для простого случая системы из двух частиц с массами m 1 и m 2 , расположенными в плоскости X Y в точках с координатами x 1 , y 1 и x 2 , y 2 определяется выражениями:

x C = m 1 x 1 + m 2 x 2 m 1 + m 2 , y C = m 1 y 1 + m 2 y 2 m 1 + m 2 .

Рисунок 2. Центр масс C системы из двух частиц.

В векторной форме это соотношение принимает вид:

r C → = m 1 r 1 → + m 2 r 2 → m 1 + m 2 .

Аналогично, для системы из многих частиц радиус-вектор r C → центра масс определяется выражением

r C → = ∑ m i r i → ∑ m i .

Если мы имеем дело с твердым телом, состоящим из одной части, то в приведенном выражении суммы для r C → необходимо заменить интегралами.

Центр масс в однородном поле тяготения совпадает с центром тяжести. Это значит, что если мы возьмем тело сложной формы и подвесим его за центр масс, то в однородном поле тяготения это тело будет находиться в равновесии. Отсюда следует способ определения центра масс сложного тела на практике: его необходимо последовательно подвесить за несколько точек, одновременно отмечая по отвесу вертикальные линии.

Рисунок 3. Определение положения центра масс C тела сложной формы. A 1 , A 2 , A 3 точки подвеса.

На рисунке мы видим тело, которое подвешено за центр масс. Оно находится в состоянии безразличного равновесия. В однородном поле тяготения равнодействующая сил тяжести приложена к центру масс.

Мы можем представить любое движение твердого тела как сумму двух движений. Первое поступательное, которое производится со скоростью центра масс тела. Второе – это вращение относительно оси, которая проходит через центр масс.

Пример 1

Предположим. Что у нас есть колесо, которое катится по горизонтальной поверхности без проскальзывания. Все точки колеса во время движения перемещаются параллельно одной плоскости. Такое движение мы можем обозначить как плоское.

Определение 3

Кинестетическая энергия вращающегося твердого тела при плоском движении будет равна сумме кинетической энергии поступательного движения и кинетической энергии вращения относительно оси, которая проведена через центр масс и располагается перпендикулярно плоскостям, в которых движутся все точки тела:

E k = m v C 2 2 + I C ω 2 2 ,

где m – полная масса тела, I C – момент инерции тела относительно оси, проходящей через центр масс.

Рисунок 4. Качение колеса как сумма поступательного движения со скоростью v C → и вращения с угловой скоростью ω = v C R относительно оси O , проходящей через центр масс.

В механике используется теорема о движении центра масс.

Теорема 1

Любое тело или несколько взаимодействующих тел, которые представляют собой единую систему, обладают центром масс. Этот центр масс под воздействием внешних сил перемещается в пространстве как материальная точка, в которой сосредоточена вся масса системы.

На рисунке мы изобразили движение твердого тела, на которое действуют силы тяжести. Центр масс тела движется по траектории, которая близка к параболе, тогда как траектория остальных точек тела является более сложной.

Рисунок 5. Движение твердого тела под действием силы тяжести.

Рассмотрим случай, когда твердое тело движется вокруг некоторой неподвижной оси. Момент инерции этого тела инерции I можно выразить через момент инерции I C этого тела относительно оси, проходящей через центр масс тела и параллельной первой.

Рисунок 6. К доказательству теоремы о параллельном переносе оси вращения.

Пример 2

Для примера возьмем твердое тело, форма которого произвольна. Обозначим центр масс С. Выберем систему координат Х У с началом координат 0 . Совместим центр масс и начало координат.

Одна из осей проходит через центр масс С. Вторая ось пересекает произвольно выбранную точку Р, которая расположена на расстоянии d от начала координат. Выделим некоторый малый элемент массы данного твердого тела Δ m i .

По определению момента инерции:

I C = ∑ ∆ m i (x i 2 + y i 2) , I P = ∑ m i (x i - a) 2 + y i - b 2

Выражение для I P можно переписать в виде:

I P = ∑ ∆ m i (x i 2 + y i 2) + ∑ ∆ m i (a 2 + b 2) - 2 a ∑ ∆ m i x i - 2 b ∑ ∆ m i y i .

Два последних члена уравнения обращаются в нуль, так как начало координат в нашем случае совпадает с центром масс тела.

Так мы пришли к формуле теоремы Штейнера о параллельном переносе оси вращения.

Теорема 2

Для тела, которое вращается относительно произвольной неподвижной оси, момент инерции, согласно теореме Штейнера, равен сумме момента инерции этого тела относительно параллельной ей оси, проходящей через центр масс тела, и произведения массы тела на квадрат расстояния между осями.

I P = I C + m d 2 ,

где m – полная масса тела.

Рисунок 7. Модель момента инерции.

На рисунке ниже изображены однородные твердые тела различной формы и указаны моменты инерции этих тел относительно оси, проходящей через центр масс.

Рисунок 8. Моменты инерции I C некоторых однородных твердых тел.

В тех случаях, когда мы имеем дело с твердым телом, которое вращается относительно неподвижной оси, мы можем обобщить второй закон Ньютона. На рисунке ниже мы изобразили твердое тело произвольной формы, вращающееся относительно некоторой оси, проходящей через точку О. Ось вращения расположена перпендикулярно плоскости рисунка.

Δ m i – это произвольный малый элемент массы, на который оказывают воздействие внешние и внутренние силы. Равнодействующая всех сил есть F i → . Ее можно разложить на две составляющие: касательную составляющую F i τ → и радиальную F i r → . Радиальная составляющая F i r → создает центростремительное ускорение a n .

Рисунок 9. Касательная F i τ → и радиальная F i r → составляющие силы F i → действующей на элемент Δ m i твердого тела.

Касательная составляющая F i τ → вызывает тангенциальное ускорение a i τ → массы Δ m i . Второй закон Ньютона, записанный в скалярной форме, дает

∆ m i a i τ = F i τ sin θ или ∆ m i r i ε = F i sin θ ,

где ε = a i τ r i – угловое ускорение всех точек твердого тела.

Если обе части написанного выше уравнения умножить на r i , то мы получим:

∆ m i r i 2 ε = F i r i sin θ = F i l i = M i .

Здесь l i – плечо силы, F i , → M i – момент силы.

Теперь нужно аналогичные соотношения записать для всех элементов массы Δm i вращающегося твердого тела, а затем просуммировать левые и правые части. Это дает:

∑ ∆ m i r i 2 ε = ∑ M i .

Стоящая в правой части сумма моментов сил, действующих на различные точки твердого тела, состоит из суммы моментов всех внешних сил и суммы моментов всех внутренних сил.

∑ M = ∑ M i в н е ш н + ∑ M i в н у т р.

Но сумма моментов всех внутренних сил согласно третьему закону Ньютона равна нулю, поэтому в правой части остается только сумма моментов всех внешнихсил, которые мы будем обозначать через M . Так мы получили основное уравнение динамики вращательного движения твердого тела.

Определение 4

Угловое ускорение ε и момент сил M в этом уравнении являются величинами алгебраическими.

Обычно за положительное направление вращения принимают направление против часовой стрелки.

Возможна и векторная форма записи основного уравнения динамики вращательного движения, при которой величины ω → , ε → , M → определяются как векторы, направленные по оси вращения.

В разделе, посвященном поступательному движению тела, мы ввели понятие импульса тела p → . По аналогии с поступательным движением для вращательного движения мы вводим понятие момента импульса.

Определение 5

Момент импульса вращающегося тела – это физическая величина, которая равняется произведению момента инерции тела I на угловую скорость ω его вращения.

Для обозначения момента импульса используется латинская буква L .

Поскольку ε = ∆ ω ∆ t ; ∆ t → 0 , уравнение вращательного движения можно представить в виде:

M = I ε = I ∆ ω ∆ t или M ∆ t = I ∆ ω = ∆ L .

Получаем:

M = ∆ L ∆ t ; (∆ t → 0) .

Мы получили это уравнение для случая, когда I = c o n s t . Но оно будет справедливо и тогда, когда момент инерции тела будет изменяться в процессе движения.

Если суммарный момент M внешних сил, действующих на тело, равен нулю, то момент импульса L = I ω относительно данной оси сохраняется: ∆ L = 0 , если M = 0 .

Определение 6

Следовательно,

L = l ω = c o n s t .

Так мы пришли к закону сохранения момента импульса.

Пример 3

В качестве примера приведем рисунок, на котором изображено неупругое вращательное столкновение дисков, которые насажены на общую для них ось.

Рисунок 10. Неупругое вращательное столкновение двух дисков. Закон сохранения момента импульса: I 1 ω 1 = (I 1 + I 2) ω .

Мы имеем дело с замкнутой системой. Для любой замкнутой системы закон сохранения момента импульса будет справедливым. Он выполняется и в условиях экспериментов по механике, и в условиях космоса, когда планеты движутся по своим орбитам вокруг звезды.

Мы можем записать уравнение динамики вращательного движения как для неподвижной оси, так и для оси, которая перемещается равномерно или с ускорением. Вид уравнения не изменится и в том случае, если ось движется ускоренно. Для этого должно выполняться два условия: ось должна проходить через центр массы тела, а ее направление в пространстве остается неизменным.

Пример 4

Предположим, что у нас есть тело (шар или цилиндр), которое катится по наклонной плоскости с некоторым трением.

Рисунок 11. Качение симметричного тела по наклонной плоскости.

Ось вращения O проходит через центр масс тела. Моменты силы тяжести m g → и силы реакции N → относительно оси O равны нулю. Момент M создает только сила трения: M = F т р R .

Уравнение вращательного движения:

I C ε = I C a R = M = F т р R ,

где ε – угловое ускорение катящегося тела, a – линейное ускорение его центра масс, I C – момент инерции относительно оси O , проходящей через центр масс.

Второй закон Ньютона для поступательного движения центра масс записывается в виде:

m a = m g sin α - F т р.

Исключая из этих уравнений F т р, получим окончательно:

α = m g sin θ I C R 2 + m .

Из этого выражения видно, что быстрее будет скатываться с наклонной плоскости тело, обладающее меньшим моментом инерции. Например, у шара I C = 2 5 m R 2 , а у сплошного однородного цилиндра I C = 1 2 m R 2 . Следовательно, шар будет скатываться быстрее цилиндра.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter


Здесь - это момент импульса относительно оси вращения, то есть проекция на ось момента импульса, определенного относительно некоторой точки, принадлежащей оси (см. лекцию 2). - это момент внешних сил относительно оси вращения, то есть проекция на ось результирующего момента внешних сил, определенного относительно некоторой точки, принадлежащей оси, причем выбор этой точки на оси, как и в случае с значения не имеет. Действительно (рис. 3.4), где - составляющая силы, приложенной к твердому телу, перпендикулярная оси вращения, - плечо силы относительно оси.

Рис. 3.4.

Поскольку ( - момент инерции тела относительно оси вращения), то вместо можно записать

(3.8)


Вектор всегда направлен вдоль оси вращения, а - это составляющая вектора момента силы вдоль оси.

В случае получаем соответственно и момент импульса относительно оси сохраняется. При этом сам вектор L , определенный относительно какой-либо точки на оси вращения, может меняться. Пример такого движения показан на рис. 3.5.

Рис. 3.5.

Стержень АВ, шарнирно закрепленный в точке А, вращается по инерции вокруг вертикальной оси таким образом, что угол между осью и стержнем остается постоянным. Вектор момента импульса L , относительно точки А движется по конический поверхности с углом полураствора однако проекция L на вертикальную ось остается постоянной, поскольку момент силы тяжести относительно этой оси равен нулю.

Кинетическая энергия вращающегося тела и работа внешних сил (ось вращения неподвижна).

Скорость i -й частицы тела

(3.11)

где - расстояние частицы до оси вращение Кинетическая энергия

(3.12)

так как угловая скорость вращения для всех точек одинакова.

В соответствии с законом изменения механической энергии системы элементарная работа всех внешних сил равна приращению кинетической энергии тела:


опустим, что диск точила вращается по инерции с угловое скоростью и мы останавливаем его, прижимая какой-либо предмет к краю диска с постоянным усилием. При этом на диск будет действовать постоянная по величине сила направленная перпендикулярно его оси. Работа этой силы


где - момент инерции диска точила вместе с якорем электромотора.

Замечание. Если силы таковы, что то работу они не производят.

Свободные оси. Устойчивость свободного вращения.

При вращении тела вокруг неподвижной оси эта ось удерживается в неизменном положении подшипниками. При вращении несбалансированных частей механизмов оси (валы) испытывают определенную динамическую нагрузку, Возникают вибрации, тряска, и механизмы могут разрушиться.

Если твердое тело раскрутить вокруг произвольной оси, жестко связанной с телом, и высвободить ось из подшипников, то ее направление в пространстве, вообще говоря, будет меняться. Для того, чтобы произвольная ось вращения тела сохраняла свое направление неизменным, к ней необходимо приложить определенные силы. Возникающие при этом ситуации показаны на рис. 3.6.

Рис. 3.6.

В качестве вращающегося тела здесь использован массивный однородный стержень АВ, прикрепленный к достаточно эластичной оси (изображена двойными штриховыми линиями). Эластичность оси позволяет визуализировать испытываемые ею динамические нагрузки. Во всех случаях ось вращения вертикальна, жестко связана со стержнем и укреплена в подшипниках; стержень раскручен вокруг этой оси и предоставлен сам себе.

В случае, изображенном на рис. 3.6а, ось вращения является для точки В стержня главной, но не центральной, Ось изгибается, со стороны оси на стержень действует сила обеспечивающая его вращение (в НИСО, связанной со стержнем, эта сила уравновешивает центробежную силу инерции). Со стороны стержня на ось действует сила уравновешенная силами со стороны подшипников.

В случае рис. 3.6б ось вращения проходит через центр масс стержня и является для него центральной, но не главной. Момент импульса относительно центра масс О не сохраняется и описывает коническую поверхность. Ось сложным образом деформируется (изламывается), со стороны оси на стержень действуют силы и момент которых обеспечивает приращение (В НИСО, связанной со стержнем, момент упругих сил компенсирует момент центробежных сил инерции, действующих на одну и другую половины стержня). Со стороны стержня на ось действуют силы и направленные противоположно силам и Момент сил и уравновешен моментом сил и возникающих в подшипниках.

И только в том случае, когда ось вращения совпадает с главной центральной осью инерции тела (рис.3.6в), раскрученный и предоставленный сам себе стержень не оказывает на подшипники никакого воздействия. Такие оси называют свободными осями, потому что, если убрать подшипники, они будут сохранять свое направление в пространстве неизменным.

Иное дело, будет ли это вращение устойчивым по отношению к малым возмущениям, всегда имеющим место в реальных условиях. Опыты показывают, что вращение вокруг главных центральных осей с наибольшим и наименьшим моментами инерции является устойчивым, а вращение вокруг оси с промежуточным значением момента инерции - неустойчивым. В этом можно убедиться, подбрасывая вверх тело в виде параллелепипеда, раскрученное вокруг одной из трех взаимно перпендикулярных главных центральных осей (рис. 3.7). Ось AA" соответствует наибольшему, ось BB" - среднему, а ось CC" - наименьшему моменту инерции параллелепипеда. Если подбросить такое тело, сообщив ему быстрое вращение вокруг оси AA" или вокруг оси CC", можно убедиться в том, что это вращение является вполне устойчивым. Попытки заставить тело вращаться вокруг оси BB" к успеху не приводят - тело движется сложным образом, кувыркаясь в полете.

- твердое тело - углы Эйлера

См. также: