Самодельный сверхчувствительный микрофонный усилитель. Остронаправленный высокочувствительный микрофон Высокочувствительный микрофон

Микрофон может использоваться как для записи музыки дома, стриминга или караоке, так и для концертных выступлений и записи целого оркестра. Динамические микрофоны, способные пережить резкие перепады звукового давления часто используют для точной передачи звука ударных, а конденсаторные микрофоны могут записывать даже самые тихие звуки.

Конденсаторные и динамические микрофоны

Конденсаторные микрофоны более чувствительны, имеют широкий частотный диапазон, передают звук достовернее и могут быть очень компактными. Но они слишком чувствительны к падениям или ударам и не могут работать на холоде. Кроме того, для работы конденсаторного микрофона нужно дополнительное питание 48 В. Такая функция есть во многих микшерных пультах, предусилителях, внешних звуковых картах и других устройствах с микрофонным входом. Если же его нет, можно дополнительно приобрести блок с фантомным питанием. Конденсаторные микрофоны чаще всего используют в студиях звукозаписи, на телевидении и при видеосъемке.

Динамические микрофоны выдерживают резкие звуки или перепады в звуковом давлении, поэтому их часто используют для записи ударных установок. Их конструкция более надежная и менее подвержена выходу из строя после падения. Для динамических микрофонов в меньшей степени характерна проблема «обратной связи», они меньше «ловят» низкочастотные шумы или призвуки. Но у них не самый широкий частотный диапазон и ниже достоверность передачи звука. Динамические микрофоны используют в студиях, на выезде, на концертах, в театрах и дома.

Характеристики микрофонов

Чувствительность микрофона указывается в дБ, и чем меньше это значение по модулю, тем проще микрофону записывать тихие звуки. Некоторые динамические микрофоны имеют достаточно низкую чувствительность в -70 дБ, тогда как многие конденсаторные микрофоны обладают более высокой чувствительностью на уровне от -46 до -35 дБ и выше. Если необходимо провести запись в непосредственной близости от микрофона, не нужно гнаться за устройствами с высокой чувствительностью, и наоборот, если задача предполагает извлечение достаточно тихих звуков в камерной атмосфере (акустическая гитара, струнный квартет), нужно позаботиться о микрофоне с более высокой чувствительностью.

Максимальный уровень звукового давления (SPL) показывает, на какую громкость звука рассчитан микрофон. Высокими значениями уровня звукового давления являются показатели более 90 дБ. Такой шум можно ощутить вблизи Ниагарского водопада или на рок-концерте. Уровень шума в тихой студии звукозаписи составляет 10 дБ, а взлетающий реактивный самолет способен развивать звуковое давление, близкое к болевому порогу человека в 130 дБ. Микрофоны с высоким показателем максимального уровня звукового давления стоит выбирать для концертной деятельности или любой другой области, где источник звука очень мощный.

Одни из самых важных параметров микрофона динамический диапазон (способность воспроизводить самые тихие и самые громкие звуки без искажений) и отношение «сигнал/шум» (разница в дБ между 94 дБ динамического диапазона микрофона и собственным шумом). Что чем это значение, тем лучше - вы получите более чистое, прозрачное и динамичное звучание.

Чем шире частотный диапазон, тем звук при передаче более естественный и натуральный - и басовые инструменты не «съедаются», и высокие ноты хорошо слышны. Почти все динамические микрофоны имеют диапазон от 50 – 80 Гц до 15 кГц - этого достаточно для вокала и большей части акустических инструментов, за исключением самых низко- и высокочастотных - контрафагота, тубы, большого органа, рояля, контрабаса, большого барабана и скрипки, цимбал и многих деревянных духовых инструментов. Если же стоит задача качественно записать выступление симфонического оркестра, микрофон лучше подбирать с более широким диапазоном - конденсаторный. Для простой передачи речи достаточно охвата в 100 –10 000 Гц.

Чем больше сопротивление микрофона, тем хуже его слышно, если не использовать микшерный пульт или звуковую карту со встроенными предусилителями. При подключении высокоомного микрофона к стандартному входу компьютера или караоке звук будет очень тихим.

Специализированные микрофоны

Микрофоны для общения по сети стоят недорого, поскольку от них не требуют высокого качества звукопередачи. Они бывают настольного исполнения либо в виде «прищепки» для крепления на одежду.

Микрофоны для больших конференций четко передают речь и устраняют посторонние звуки (кашель, шуршание бумаг). Их можно разделить на настольные поверхностные микрофоны, микрофоны «на гусиной шее», микрофоны пограничного слоя (встраиваются в стол или в кафедру вровень с их поверхностью), а также ручные, петличные и головные.

Когда за небольшим столом собирается группа из нескольких человек, не обязательно каждому ее участнику ставить отдельный микрофон, достаточно установить в центре стола один всенаправленный микрофон. Если же участвующих в конференции много, и им необходимо говорить часто по очереди или выступать по одному перед всеми, лучше использовать однонаправленный микрофон «на гусиной шее», кардиоидный или суперкардиоидный, который улавливает звук только непосредственно говорящего в него.

Более продвинутый вариант - большие конференц-системы, состоящие из пульта «председателя» (который может управлять другими микрофонами), пультов «делегатов» и головного устройства, которое позволяет делать переводы, запись самой конференции и назначение групп делегатов. У таких пультов есть кнопка вкл/выкл, возможность подключения наушников, у некоторых - выбор перевода, встроенный динамик и подсветка на стержне микрофона.

Микрофоны для записи видео фотоаппаратом имеют возможность установки в «горячий башмак» (hot shoe) фотоаппарата и подключаются к нему через разъем 3,5 мм mini-jack (реже XLR).

Беспроводные микрофоны

Беспроводные микрофоны очень удобны и часто бывают необходимы в разных сферах - в театрах, на концертах или лекциях в больших аудиториях. Первое, что здесь необходимо учитывать - это расстояние, на котором может работать система, в среднем это 50 – 60 м. Но существуют и системы с дальностью действия до 100 м. Если нужно использовать несколько радиосистем в одном месте, нужно учитывать, сколько радиосистема может иметь разных частот, чтобы они не создавали друг другу проблем.

Головной или петличный микрофон, работающий с радиосистемой, имеет поясной (или карманный) передатчик, микрофон к которому подключается кабелем небольшой длины. Но не всякий микрофон можно подключить к любому передатчику. Недостаток беспроводных микрофонов - необходимость смены батареек или подзарядки аккумуляторов в среднем через 6 ч работы.

Дорогой профессиональный микрофон нет смысла приобретать, если нет соответствующего оборудования для его подключения - предусилителей или студийных звуковых карт и профессиональных записывающих устройств, а также подготовленного помещения (студии). Он не сможет работать в таких условиях в соответствии с заявленными характеристиками.

Если вы ищете недорогой, но качественный и надежный микрофон для дома, например, чтобы петь в домашнем караоке или записывать вокал на ноутбук, лучше выбрать динамический микрофон, поскольку он наименее подвержен поломке при случайных падениях или ударах и не требует дополнительного питания. Достаточно подключить его к звуковой карте, караоке-системе или в микшерный пульт.

Если микрофон подбирается для записи подкастов в домашних условиях, нужно учесть, насколько он чувствителен и «капризен» - конденсаторный микрофон с высокой чувствительностью будет записывать звуки работающих электроприборов в комнате. Для их устранения нужно будет позаботиться о дополнительных аксессуарах: поп-фильтре и микрофонной стойке.

Справочная статья, основанная на экспертном мнении автора.

Когда-то давно я сделал остронаправленный высокочувствительный микрофон и выложил результаты его испытаний в интернете. С тех пор прошло уже много лет, но мне по-прежнему приходят запросы на приобретение этого изделия. В абсолютном большинстве случаев желающие приобрести имеют представление об этом изделии из художественных кинофильмов, обычно детективных. Поэтому, как только я высылал им фото, их интерес к нему пропадал. Для тех, кому действительно интересно такое устройство я решил написать эту статью, в которой кратко рассказать о том, как сделать его своими руками.

Структурно изделие состоит из параболического отражателя, приемного устройства, расположенного в его фокусе, НЧ усилителя, наушников и автономного блока питания. Все устройство закреплено на подвеске, позволяющей плавно поворачивать его в горизонтальной и вертикальной плоскости.
Чтобы представлять назначение каждого блока устройства напомню немного теории.

Пусть на параболический отражатель падает поток звуковых волн. Если источник звука достаточно далек, то звуковой поток можно представить в виде потока параллельных векторов. Падая на поверхность вектора отражаются в область фокуса (см. рис.2). Согласно волновой теории диаметр этой зоны d не может быть меньше длины волны падающего на отражатель звука. То есть, d ≥ λ, где λ = c/f. Здесь c – скорость звука, f – его частота. Будем считать, что форма параболического отражателя идеальна, а потому d = λ. Отсюда следует первая важнейшая характеристика устройства, его коэффициент усиления параболического отражателя: Kp = (D/d)2

Смысл данного соотношения очень прост. Звуковой поток падает на поверхность параболоида S = πD2/4. Параболоид концентрирует энергию потока в фокусе на поверхность приемного устройства площадью s = πd2/4. В результате на этой поверхности плотность энергии звукового потока возрастает в Kp = S/s = (D/d)2 раз. На фото диаметр параболического отражателя D = 90 см. Для волны λ = 15 см (f = 2000 гц.) получим Kp = (90/15)2 = 36.


Рис. 2

Второй важнейшей характеристикой устройства является его острота направленности. Этот параметр важен потому, что необходимо не просто усилить звуковой сигнал, а усилить полезный сигнал. Для этого необходимо с помощью диаграммы направленности «вырезать» его из общего звукового потока. Величину диаграммы направленности параболического отражателя можно вычислить так. Поворачивая параболоид (см. рис. 3) можно повернуть его на такой угол α, что область концентрации звукового потока выйдет за пределы приемного устройства. Поскольку размеры приемного устройства ограничены длиной волны принимаемого звука λ, то угол диаграммы направленности в первом приближении можно выразить так:
α = arctg(λ/F).

В устройстве, показанном на фото, параболический отражатель имеет фокусное расстояние F = 36 см. Отсюда, для λ = 15 см острота направленности устройства будет равна 22 градуса. Это достаточно малый угол. По этой причине параболический отражатель с приемным устройством установлены на подвеске (см.фото рис.1) которая позволяет плавно его поворачивать. Без этой подвески работать с устройством крайне затруднительно. К этому следует добавить, что в соотношения как коэффициента усиления (1), так и остроты направленности (2) входит длина волны λ. По мере ее уменьшения растут как коэффициент усиления, так и острота направленности. Это хорошо заметно при прослушивании акустического горизонта. Лучше всего слышны звуки высокой частоты: на природе крики птиц, в жилом районе звон посуды из открытых окон и форточек.


Рис. 3

Что касается приемного устройства, которое находится в фокусе параболоида (см. рис. 4). Основной частью устройства является кронштейн. В его центральной части есть отверстие. С одной стороны в нем закреплен конденсаторный микрофон, а с другой в него входит с небольшим зазором поршень из пенопласта, который приклеен к мембране. Сама мембрана вклеена в кронштейн. Кронштейн имеет окна, которые соединяют объем, ограниченный мембраной с объемом корпуса. Для увеличения акустического объема корпуса он заполнен синтепоном или иным волокнистым материалом.

Устройство помещено в фокусе параболического отражателя и работает следующим образом. Поток звуковых волн, отраженный параболическим отражателем падает на мембрану и заставляет ее колебаться. Из теории мембран следует, что под действием давления (звуковой волны) мембрана изгибается по форме параболоида четвертой степени. То есть под действием звуковых волн перемещается преимущественно центральная область мембраны. А это значит, что мембрана концентрирует энергию падающей звуковой волны в колебания своей центральной зоны. В результате поршень, который вклеен в центральную часть мембраны, будет возбуждать в объеме между ним и микрофоном колебания с амплитудой существенно превышающей амплитуду падающей на мембрану звуковой волны. Коэффициент усиления мембраны можно оценить так:
Km = (Dm/dk)2

Величину dk, т.е. размер зоны концентрации деформаций мембраны в первом приближении ее можно принять равной dk ≈ 0,2 Dm. Отсюда коэффициент усиления мембраны (для Dm = 15 см) будет равен: Km ≈ 25. Тогда общий акустический коэффициент усиления устройства будет равен: K = Kp Km = 36 x 25 = 900.

Некоторые практические советы по изготовлению остронаправленного высокочувствительного микрофона.


Рис. 4

1. Параболический отражатель

В своем устройстве в качестве отражателя я использовал прямофокусный отражатель спутниковой антенны с параметрами: D = 900 мм, F = 360 мм, F/D = 0.4. Материал отражателя – алюминиевый лист толщиной 1 мм. Подвеска (устройство поворота отражателя в двух плоскостях) стандартная от спутниковой антенны. Стойка с треногой самодельная.
Сейчас прямофокусных спутниковых «тарелок», тем более алюминиевых нет. Их вытеснили стальные офсетные. В принципе это не столь существенно. Неудобство состоит лишь в том, что стальная тарелка существенно тяжелее алюминиевой, а из-за офсетной формы, вектор ее диаграммы направленности не столь наглядный как у прямофокусной. Спутниковую тарелку можно купить как в специализированных фирмах, так и на радиорынке. Весте с «тарелкой» следует купить и ее подвеску, включая подвеску конвертора. То есть следует купить спутниковую антенну, но без электроники (конвертора и тюнера). Использовать для изготовления микрофона «тарелку» диаметром менее 900 мм нет смысла.

2. Приемное устройство

В качестве корпуса приемного устройства можно использовать любой цилиндрический контейнер подходящего (D ≈ 150 мм) размера. Например, можно использовать кружку из нержавеющей стали. Сейчас таких продают много.
Внутри корпуса размещается микрофонный НЧ усилитель. Я не электронщик, а потому использовал готовую схему усилителя и набор деталей КИТ ее реализующий. В качестве микрофона использовал конденсаторный микрофон диаметром около 1 см. Вопросы согласования характеристик микрофона и НЧ усилителя выяснял у продавцов наборов КИТ.
Выход усилителя и подвод к нему питания выведены на пятипиновый разъем, врезанный в корпус приемного устройства (см. фото).

Кронштейн (см. рис.3) выточен из пластика (я вытачивал из текстолита). Я не привожу его конкретные размеры. Достаточно задаться его внешним диаметром (у меня 150 мм) и диаметром микрофона (около 10 мм). Остальные размеры достаточно произвольные. Их соотношение можно взять, например, из приведенного рисунка 4.

Окна кронштейна (3 секторных окна) я высверлил, края обработал напильником. Затем подобрал тонкостенную металлическую трубку длиной миллиметров 50…100, с наружным диаметром, равным диаметру микрофона. После просверлил в кронштейне отверстие диаметров, равным наружному диаметру этой трубки. Край трубки заточил так, что получил из нее высечку. За тем подготовил пластину из пенопласта толщиной 5…7 мм. Вращая высечку, вырезал с ее помощью из пенопластовой пластины поршень. Поршень оставил в трубке.

После этих подготовительных работ можно вклеивать мембрану. Из папиросной либо иной тонкой бумаги вырезаем круг, равный диаметру кронштейна. Вклеиваем его в кронштейн с помощью водостойкого клея (резиновый клей, клей 88, «Момент» (каучуковый) и др.) После того как клей высох смачиваем (например ватным тампоном) вклеенную мембрану водой и даем ей высохнуть. После высыхания мембрана туго натянется. После этого в мембрану можно вклеить пенопластовый поршень, который находится в металлической трубке. Для этого выступающий из трубки торец поршня смазываем водостойким клеем. Но не «Моментом», он интенсивно растворяет пенопласт. Резиновый или 88 – ой. Кладем кронштейн на плоскую поверхность мембраной вниз и в центральное отверстие вводим трубку с поршнем. Не вынимая трубки, выталкиваем из нее поршень до соприкосновения с мембраной. За тем, прижимая поршень к мембране, осторожно вынимаем трубку из отверстия кронштейна. Все поршень вклеен. Спрашивается, зачем все эти сложности. За тем, чтобы поршень был установлен в отверстии кронштейна с минимальным зазором и строго коаксиально.

После вклейки поршня с другой стороны отверстия закрепляем микрофон. Например, подматываем на его боковую поверхность бумагу и плотно вставляем микрофон в отверстие. Соединение микрофона с платой НЧ усилителя желательно сделать разъемным. При проверке и настройке НЧ усилителя микрофон придется многократно отключать и подключать к плате усилителя. Кронштейн с вклеенной мембраной и микрофоном закрепляется в корпусе приемного устройства с помощью боковых винтов (саморезов). После того как НЧ усилитель настроен его плата закрепляется в корпусе приемного устройства, например с помощью термоклея. После этого корпус приемного устройства заполняется волокнистым материалом (синтепон, хлопковая вата и т.п. волокнистым материалом) и закрывается собранным кронштейном. Чтобы защитить бумажную мембрану от повреждения ее следует закрыть не очень толстой (8…10 мм) пластиной поролона (пенополиуритана). Поролон закрыть тонкой полиэтиленовой пленкой. Такая защита сколько ни будь существенно качество приема не снижает, но защищает мембрану от дождя и шума ветра.

3. Блок питания

Сейчас полно недорогих малогабаритных аккумуляторных батарей на основе которых можно сделать блок питания устройства. Кроме своего прямого назначения он используется также для коммутации. То есть аккумуляторная батарея размещается в корпусе, который используется для закрепления в нем следующий элементов. Выключатель питания, резистор управления уровнем сигнала с НЧ усилителя, пятипиновый разъем для подключения приемного устройства (на фото виден кабель, соединяющий разъем приемного устройства и блока питания). Кроме этого разъем для подключения наушников, и, при необходимости, записывающего устройства, которое содержит аналоговый вход.

После того как все блоки готовы устройство собирается в целом. Приемное устройство закрепляется вместо конвертора в фокусе спутниковой тарелки. С помощью штатной подвески тарелка устанавливается в подходящей треноге. Кабелем соединяем блок питания и приемное устройство. Подсоединяем наушники. Все, высокочувствительный остронаправленный микрофон готов к работе. Осталось только включить питание и начать прослушивать акустический горизонт.

Для сборки схемы чувствительного микрофона нам понадобится:

1. Транзистор BC547 или КТ3102, можно попробовать КТ315.
2. Резисторы R1 и R2 номиналом 1 кОм. Для увеличения чувствительности R1 под капсюль, номиналом от 0,5 – 10 кОм.
4. Дисковый керамический конденсатор номиналом 100-300 пФ. Его можно не включать, если изначально никаких «шипов» или возбуждений усилителя не будет.
5. Электролитический конденсатор 5-100 мкФ (6,3 -16 В).

Первым делом определим полярность подключения микрофона-капсюля. Делается это простой: минус всегда подключен к корпусу. Затем собираем схему, хоть навесным монтажом, хоть на мини плате. Вся чувствительность предварительного усилителя будет зависеть от коэффициента усиления транзистора и подобранного резистора R1. Обычно усилитель собирается и работает сразу, его чувствительности должно хватать с запасом.

Запись сделана на капсюль без схемы предварительного усилителя.


Запись сделана на капсюль со схемы предварительного усилителя.


Разницу видно не вооруженным глазом. Теперь микрофон не обязательно вешать на шею и в него кричать. Можно вполне поставить его на стол и говорить без лишних усилий. Ну а если чувствительность окажется слишком большой, то её всегда можно без проблем убавить настройками в операционной системе.