Используем KVM для создания виртуальных машин на сервере. Русскоязычная документация по Ubuntu Установка kvm на ubuntu server 16.04

Ранее я уже писал об установке Qemu-KVM в Debian . Но, на мой взгляд, информация получилась неполной. Плюс я не учёл некоторые нюансы. Потому предлагаю вашему вниманию обновлённую статью по установке виртуальной машины Qemu-KVM. Старую статью, естественно, удалю.

Думаю, объяснять что такое виртуальная машина , не стоит. Вы наверняка это знаете (раз читаете эту статью). Если нет - . Мы же остановимся непосредсвенно на сабже. Qemu-KVM - это проект по объединению двух замечтальнейшийх (на мой взгляд) технологий полной виртуализации. Qemu - это своего рода "эмулятор компьютера", который поддерживает великое множество аппаратных архитектур. В нём можно запустить практически любую ОС для любого устройства (к примеру я запускал старые версии Mac OS X , который для PowerPC ). Недостатком Qemu является его медлительность вследствии отсутствия аппратного ускорения. И тут на помощь приходит другой проект - KVM . Или Kernel Virtual Machine. KVM - это технология ядра Linux, которая позволяет обеспечить аппаратное ускорение при полной виртуализации. Недостатком KVM является поддержка только архитектуры x86

Почему Qemu-KVM? Для Linux это самый рекомендуемый проект виртуализации. Он работает быстрее, чем VirtualBox и VMware Player (по моим тестам), KVM - это родная для Линукса технология. Плюс, если вы обладатель хорошего игрового компьютера с двумя видеокартами, вы можете установить в Qemu-KVM Windows , пробросить в неё одну из видеокарт, и забыть о перезагрузке в другую ОС. Захотели поиграть - запустили виртуалку с виндой и играете. Производительность будет 95% от производительности установленной на "железо" винды. Но это просто шикарно, на мой взгляд. Об этом я напишу отдельную статью. Будет интересно:)

А теперь опишу план наших действий. Во первых, установку я буду проводить на примере Debian 8.2 GNOME 64 bit , хотя, особых различий в других графических окружениях не будет. Во-вторых - я буду описывать работу с KVM только в графическом режиме (мы ведь не на сервер будет его ставить). Поэтому никаких терминалов, скриптов и так далее, как обычно поступают в случае серверной виртуализации. В третьих - советую вам дополнительно прочитать документацию к Qemu и KVM (ссылки дам в конце статьи). Вам это очень пригодится, если вы хотите по-максимуму использовать весь потенциал этой связки. Ну чтож, план наших действий ясен. Теперь этапы действий:

  • установка qemu-kvm;
  • установка графического менеджера и дополнительных утилит;
  • настройка сетевого моста;
  • создание хранилища для виртуальных машин;
  • установка гостевой системы.
Для начала проверим, поддерживает ли ваш компьютер аппаратную виртуализацию. Для этого в терминале выполняем команду:

egrep "(vmx|svm)" /proc/cpuinfo

В выводе команды должны присутствовать либо vmx , либо svm . Если их нет - проверьте включена ли виртуализация в BIOS (ищите пункты Intel VT-i или аналогичный для AMD ). Если ничего нет - значит не повезло.

Устанавливаем необходимые компоненты:

sudo apt install qemu-kvm bridge-utils libvirt-bin virt-manager

Добавляем себя в группу libvirt:

sudo adduser $USER libvirt

Теперь настроим сеть. Для того чтобы все виртауальные машины могли выходить в сеть и связываться друг с другом, нужно создать сетевой мост и виртаульные сетевые карты для каждой виртуалки (tap-устройства ). Так как виртуальные машины мы будем устанавливать из графического интерфейса, то создавать вручную tap"ы не нужно. Virt Manager сделает это за нас при каждом запуске. Нам нужно только настроить мост. Для начала включим маршрутизацию в ядре:

sudo nano /etc/sysctl.conf

Ищем строку net.ipv4_forward=0 и меняем её значение на 1 . Сохраняем и:

sudo sysctl -p

Далее я буду предполагать следующее: 1) на вашем компьютере есть одна сетевая карта, получающая ip-адрес от роутера. 2) вы выходите в интернет через 3G-модем, и сетевая карта у вас свободна. Этот вариант предполагает побольше ручной работы, но он проверен неоднократно (у самого так на одной из машин). Итак, открываем файл interfaces:

sudo nano /etc/network/interfaces

Его содержимое по умолчанию такое:



auto lo
iface lo inet loopback

Меняем его содержимое. Для первого варианта:

source /etc/network/interfaces.d/*

# The loopback network interface
auto lo
iface lo inet loopback

auto eth0
iface eth0 inet manual

auto br0
iface br0 inet static
address 192.168.0.2
gateway 192.168.0.1
netmask 255.255.255.0
network 192.168.0.0
broadcast 192.168.0.255
bridge_ports eth0
bridge_stp off
bridge_maxwait 0
bridge_fd 0

Для второго варианта:

source /etc/network/interfaces.d/*

# The loopback network interface
auto lo
iface lo inet loopback

auto ppp0
iface ppp0 inet wvdial

auto eth0
iface eth0 inet manual

auto br0
iface br0 inet static
address 192.168.0.2
gateway 192.168.0.1
netmask 255.255.255.0
network 192.168.0.0
broadcast 192.168.0.255
bridge_ports eth0
bridge_stp off
bridge_maxwait 0
bridge_fd 0
up route del default br0

Примечание: если вам не нужно автоматическое подключение Интернета через модем после старта системы, уберите из конфига строки auto ppp0 и
iface ppp0 inet wvdial . В противном случае, убедитесь что при запуске системы, модем вставлен в USB-порт.

Сохраняем. Теперь для варианта с модемом, нужно установить программу дозвона wvdial :

sudo apt install wvdial

Правим конфиг (обратите внимание: в качестве примера используется 3G-модем Beeline . Примеры конфигов для других модемов вы без труда найдёте в интернете):

sudo nano /etc/wvdial.conf


Init1 = ATZ
Init2 = ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0
Init3 = AT+CGDCONT=1,"IP","home.beeline.ru"
Stupid Mode = 1
ISDN = 0
Modem Type = USB Modem
New PPPD = yes
Phone = *99#
Modem = /dev/ttyACM0
Username = beeline
Password = beeline
Baud = 9600
Country = Russia
Auto Reconnect = on
Auto DNS = off
Idle Seconds = 0

Сохраняем. Теперь модем будет включаться сразу после загрузки системы. Строка up route del default br0 удаляет маршрут по умолчанию через мост. Если этого не сделать, вы не сможете соединиться с Интернетом, так как трафик будет идти по мосту, а не через 3G-модем.

Последним этапом нам нужно сказать фаерволлу , чтобы он пропускал в сеть трафик от наших виртуалок и обратно. Для этого можно пойти двумя путями: написать скрипт с несколькими правилами для iptables , который будет запускаться вместе с системой, или ввести эти правила вручную и сохранить их. Я воспользуюсь первым вариантом. Для второго вам нужно будет установить пакет iptables-persistent и просто поочерёдно вводить правила (с использованием sudo). Итак. создаём скрипт (в любом текстовом редакторе). Вставляем туда следующее содержимое:

#!/bin/sh

# Определяем выходной интерфейс для которого будет применяться замена адресов (NAT)
iptables -v -t nat -A POSTROUTING -o ppp0 -j MASQUERADE

# Пересылаем все пакеты, пришедшие на модем из глобальной сети (0.0.0.0/0) в локальную сеть (192.168.0.0/24)
iptables -v -A FORWARD -i ppp0 -o br0 -s 0.0.0.0/0 -d 192.168.0.0/24 -j ACCEPT

# Пересылаем все пакеты, пришедшие из локальной сети (192.168.0.0/24) в глобальную (0.0.0.0/0)
iptables -v -A FORWARD -i br0 -o ppp0 -s 192.168.0.0/24 -d 0.0.0.0/0 -j ACCEPT

Сохраняем его как gateway.sh и даём права на выполнение (либо в свойствах файла, либо в терминале командой chmod +x gateway.sh ). Теперь вы можете либо запускать его вручную, после того как загрузилась система, либо добавить в автозагрузку. Для этого переместите скрипт в ~/.config/autostart файловом менеджере включите показ скрытых файлов, и вы увидите каталог .config в домашней директории).

Теперь всё готово для установки виртуальной машины. Из меню приложений запускаем Virt Manager (менеджер виртуальных машин):

Кликаем правой кнопкой на строке localhost и выбираем Детали . Переходим на вкладку Хранилище . Нам нужно указать каталог (или раздел диска/диск) для хранения виртуальных машин.

В левом нижнем углу жмём на плюсик (Добавить пул ), указывам тип хранилища и путь к нему.

На вкладке Сетевые интерфейсы , можете проверить, всё ли работает.

Теперь нажимаем Файл - New virtual machine . Указываем путь к образу диска, тип виртуальной машины. Далее указываем количество оперативной памяти для неё и количество ядер процессора. Далее указываем наше хранилище и нажимаем Новый том . Указываем название, тип оставляем qcow2 , и размер. Это будет виртуальный жёсткий диск. Если планируете устанавливать систему с графической оболочкой и кучей программ, дайте места побольше (гигов 50). На последней вкладке ставим галочку на Изменить настройки перед запуском , проверяем что в качестве сетевого устройства выбран наш мост, пишем любое название для виртуалки и жмём Завершить . Перед вами откроется окно параметров этой виртуальной машины.





Переходим на вкладку Процессор , и ставим галочку на Скопировать настройки процессора хост-системы .

Далее на вкладку Сеть (следующая), и также указываем vitio . На вкладке Дисплей укажите Spice , а на вкладке Видео - QXL . Обычно эта связка обеспечивает максимальную производительность отрисовки графики, но, если хотите, можете поэксперементировать. Учтите, что для гостевых систем Windows, требуется отдельная установка QXL-драйвера (в самой Windows).


Теперь когда всё готово, в левом верхнем углу жмём Начать установку . И ставим систему как обычно, за одним исключением: как только установщик начнёт автоматически настраивать сеть, нажмите Отмена , и выберите Настроить сеть вручную . Укажите для виртуалки желаемый IP-адрес (в нашем случае 192.168.0.3 ), маску подсети (255.255.255.0 ), шлюз (шлюзом будет адрес хоста, тоесть 192.168.0.2 ) и DNS-сервер (здесь просто укажите Гугловский 8.8.8.8 ). И всё. Дальше ничего делать не нужно. Ставьте систему и настраивайте. В общем-то, всё. Описанные действия - это способ заменить, скажем, VirtualBox на более лучшую альтернативу. Прочитав документацию, вы поймёте, насколько широки возможности Qemu-KVM. Я намеренно не стал описывать здесь дополнительные консольные параметры и методы запуска виртуальных машин через терминал, так как это далеко не всегда нужно на домашней машине. Об этом я напишу отдельную статью, по настройке домашнего многофункционального сервера (который также сможет выступать в качестве сервера виртуальных машин). Для тех, кто по каким-то причинам не понял написанное, или остались непонятные моменты - предлагаю посмотреть ролик, в котором я уже не опишу, а покажу, как всё это добро устанавливать и настраивать. Если у вас есть предложения или дополнения к статье - пишите в комментариях.

В жизни сисадмина однажды настает момент, когда приходится с нуля разворачивать инфраструктуру предприятия либо переделывать уже имеющуюся, перешедшую по наследству. В этой статье я расскажу о том, как правильно развернуть гипервизор на основе Linux KVM и libvirt c поддержкой LVM (логических групп).

Мы пройдемся по всем тонкостям управления гипервизором, включая консольные и GUI-утилиты, расширение ресурсов и миграцию виртуальных машин на другой гипервизор.

Для начала разберемся с тем, что такое виртуализация. Официальное определение звучит так: «Виртуализация - это предоставление набора вычислительных ресурсов или их логического объединения, абстрагированное от аппаратной реализации и обеспечивающее при этом логическую изоляцию друг от друга вычислительных процессов, выполняемых на одном физическом ресурсе». То есть, если выражаться человеческим языком, имея один мощный сервер, мы можем превратить его в несколько средних серверов, и каждый из них будет выполнять свою задачу, отведенную ему в инфраструктуре, не мешая при этом другим.

Системные администраторы, работающие вплотную с виртуализацией на предприятии, мастера и виртуозы своего дела, поделились на два лагеря. Одни - приверженцы высокотехнологичной, но безумно дорогой VMware для Windows. Другие - любители open source и бесплатных решений на основе Linux VM. Можно долго перечислять преимущества VMware, но здесь мы остановимся на виртуализации, основанной на Linux VM.

Технологии виртуализации и требования к железу

Сейчас есть две популярные технологии виртуализации: Intel VT и AMD-V. В Intel VT (от Intel Virtualization Technology) реализована виртуализация режима реальной адресации; соответствующая аппаратная виртуализация ввода-вывода называется VT-d. Часто эта технология обозначается аббревиатурой VMX (Virtual Machine eXtension). В AMD создали свои расширения виртуализации и первоначально называли их AMD Secure Virtual Machine (SVM). Когда технология добралась до рынка, она стала называться AMD Virtualization (сокращенно AMD-V).

Перед тем как вводить аппаратное обеспечение в эксплуатацию, убедись, что оборудование поддерживает одну из этих двух технологий (посмотреть можно в характеристиках на сайте производителя). Если поддержка виртуализации имеется, ее необходимо включить в BIOS перед развертыванием гипервизора.

Среди других требований гипервизоров - поддержка аппаратного RAID (1, 5, 10), которая повышает отказоустойчивость гипервизора при выходе жестких дисков из строя. Если поддержки аппаратного RAID нет, то можно использовать программный на крайний случай. Но RAID - это мастхэв!

Решение, описанное в этой статье, несет на себе три виртуальные машины и успешно работает на минимальных требованиях: Core 2 Quad Q6600 / 8 Гбайт DDR2 PC6400 / 2 × 250 Гбайт HDD SATA (хардверный RAID 1).

Установка и настройка гипервизора

Я покажу, как настраивать гипервизор, на примере Debian Linux 9.6.0 - Х64-86. Ты можешь использовать любой дистрибутив Linux, который тебе по душе.

Когда ты определишься с выбором железа и его наконец-то привезут, придет время ставить гипервизор. При установке ОС все делаем, как обычно, за исключением разметки дисков. Неопытные администраторы часто выбирают опцию «Автоматически разбить все дисковое пространство без использования LVM». Тогда все данные будут записаны на один том, что нехорошо по нескольким причинам. Во-первых, если жесткий диск выйдет из строя, ты потеряешь все данные. Во-вторых, изменение файловой системы доставит массу хлопот.

В общем, чтобы избежать лишних телодвижений и потери времени, рекомендую использовать разметку диска с LVM.

Logical Volume Manager

Менеджер логических томов (LVM) - это подсистема, доступная в Linux и OS/2, построенная поверх Device Mapper. Ее задача - представление разных областей с одного жесткого диска или областей с нескольких жестких дисков в виде одного логического тома. LVM создает из физических томов (PV - Phisical Volumes) логическую группу томов (VG - Volumes Group). Она, в свою очередь, состоит из логических томов (LV - Logical Volume).

Сейчас во всех дистрибутивах Linux с ядром 2.6 и выше есть поддержка LVM2. Для использования LVM2 на ОС с ядром 2.4 надо устанавливать патч.

После того как система обнаружила жесткие накопители, запустится менеджер разбивки жестких дисков. Выбираем пункт Guided - use entire disk and set up LVM.


Теперь выбираем диск, на который будет установлена наша группа томов.



Система предложит варианты разметки носителя. Выбираем «Записать все файлы на один раздел» и идем дальше.




После сохранения изменений мы получим одну логическую группу и два тома в ней. Первый - это корневой раздел, а второй - это файл подкачки. Тут многие зададут вопрос: а почему не выбрать разметку вручную и не создать LVM самому?

Я отвечу просто: при создании логической группы VG загрузочный раздел boot не пишется в VG, а создается отдельным разделом с файловой системой ext2. Если этого не учесть, то загрузочный том окажется в логической группе. Это обречет тебя на мучения и страдания при восстановлении загрузочного тома. Именно поэтому загрузочный раздел отправляется на том без LVM.



Переходим к конфигурации логической группы для гипервизора. Выбираем пункт «Конфигурация менеджера логических томов».



Система оповестит о том, что все изменения будут записаны на диск. Соглашаемся.



Создадим новую группу - к примеру, назовем ее vg_sata .



INFO

В серверах используются носители SATA, SSD, SAS, SCSI, NVMe. Хорошим тоном при создании логической группы будет указывать не имя хоста, а тип носителей, которые используются в группе. Советую логическую группу назвать так: vg_sata , vg_ssd , vg_nvme и так далее. Это поможет понять, из каких носителей построена логическая группа.




Создаем наш первый логический том. Это будет том для корневого раздела операционной системы. Выбираем пункт «Создать логический том».



Выбираем группу для нового логического тома. У нас она всего одна.



Присваиваем имя логическому тому. Правильнее всего при назначении имени будет использовать префикс в виде названия логической группы - например, vg_sata_root , vg_ssd_root и так далее.



Указываем объем для нового логического тома. Советую выделить под корень 10 Гбайт, но можно и меньше, благо логический том всегда можно расширить.



По аналогии с примером выше создаем следующие логические тома:

  • vg_sata_home - 20 Гбайт под каталоги пользователей;
  • vg_sata_opt - 10 Гбайт для установки прикладного ПО;
  • vg_sata_var - 10 Гбайт для часто меняющихся данных, к примеру логов системы и других программ;
  • vg_sata_tmp - 5 Гбайт для временных данных, если объем временных данных велик, можно сделать и больше. В нашем примере этот раздел не создавался за ненадобностью;
  • vg_sata_swap - равен объему оперативной памяти. Это раздел для свопа, и создаем мы его для подстраховки - на случай, если закончится оперативная память на гипервизоре.

После создания всех томов завершаем работу менеджера.



Теперь имеем несколько томов для создания разделов операционной системы. Нетрудно догадаться, что для каждого раздела есть свой логический том.



Создаем одноименный раздел под каждый логический том.



Сохраняем и записываем проделанные изменения.



После сохранения изменений разметки диска начнут ставиться базовые компоненты системы, а затем будет предложено выбрать и установить дополнительные компоненты системы. Из всех компонентов нам понадобится ssh-server и стандартные системные утилиты.



После установки будет сформирован и записан на диск загрузчик GRUB. Устанавливаем его на тот физический диск, где сохранен загрузочный раздел, то есть /dev/sda .




Теперь ждем, пока закончится запись загрузчика на диск, и после оповещения перезагружаем гипервизор.





После перезагрузки системы заходим на гипервизор по SSH. Первым делом под рутом устанавливаем нужные для работы утилиты.

$ sudo apt-get install -y sudo htop screen net-tools dnsutils bind9utils sysstat telnet traceroute tcpdump wget curl gcc rsync

Настраиваем SSH по вкусу. Советую сразу сделать авторизацию по ключам. Перезапускаем и проверяем работоспособность службы.

$ sudo nano /etc/ssh/sshd_config $ sudo systemctl restart sshd; sudo systemctl status sshd

Перед установкой софта для виртуализации необходимо проверить физические тома и состояние логический группы.

$ sudo pvscan $ sudo lvs

Устанавливаем компоненты виртуализации и утилиты для создания сетевого моста на интерфейсе гипервизора.

$ sudo apt-get update; apt-get upgrade -y $ sudo apt install qemu-kvm libvirt-bin libvirt-dev libvirt-daemon-system libvirt-clients virtinst bridge-utils

После установки настраиваем сетевой мост на гипервизоре. Комментируем настройки сетевого интерфейса и задаем новые:

$ sudo nano /etc/network/interfaces

Содержимое будет примерно таким:

Auto br0 iface br0 inet static address 192.168.1.61 netmask 255.255.255.192 gateway 192.168.1.1 broadcast 192.168.0.61 dns-nameserver 127.0.0.1 dns-search сайт bridge_ports enp2s0 bridge_stp off bridge_waitport 0 bridge_fd 0

Добавляем нашего пользователя, под которым будем работать с гипервизором, в группы libvirt и kvm (для RHEL группа называется qemu).

$ sudo gpasswd -a iryzhevtsev kvm $ sudo gpasswd -a iryzhevtsev libvirt

Теперь необходимо инициализировать нашу логическую группу для работы с гипервизором, запустить ее и добавить в автозагрузку при запуске системы.

$ sudo virsh pool-list $ sudo virsh pool-define-as vg_sata logical --target /dev/vg_sata $ sudo virsh pool-start vg_sata; sudo virsh pool-autostart vg_sata $ sudo virsh pool-list

INFO

Для нормальной работы группы LVM с QEMU-KVM требуется сначала активировать логическую группу через консоль virsh .

Теперь скачиваем дистрибутив для установки на гостевые системы и кладем его в нужную папку.

$ sudo wget https://mirror.yandex.ru/debian-cd/9.5.0/amd64/iso-cd/debian-9.5.0-amd64-netinst.iso $ sudo mv debian-9.5.0-amd64-netinst.iso /var/lib/libvirt/images/; ls -al /var/lib/libvirt/images/

Чтобы подключаться к виртуальным машинам по VNC, отредактируем файл /etc/libvirt/libvirtd.conf:

$ sudo grep "listen_addr = " /etc/libvirt/libvirtd.conf

Раскомментируем и изменим строчку listen_addr = "0.0.0.0" . Сохраняем файл, перезагружаем гипервизор и проверяем, все ли службы запустились и работают.

Продолжение доступно только участникам

Вариант 1. Присоединись к сообществу «сайт», чтобы читать все материалы на сайте

Членство в сообществе в течение указанного срока откроет тебе доступ ко ВСЕМ материалам «Хакера», увеличит личную накопительную скидку и позволит накапливать профессиональный рейтинг Xakep Score!

Эту заметку я пишу для того, чтобы продемонстрировать пошаговую установку и настройку виртуальной машины в Linux на базе KVM. Ранее я уже писал про виртуализацию, где использовал замечательный .

Сейчас передо мной встал вопрос аренды хорошего сервера с большим объёмом оперативной памяти и объёмным жестким диском. Но запускать проекты прямо на хост-машине не хочется, поэтому буду разграничивать их по отдельным небольшим виртуальным серверам с ОС Linux или docker-контейнерам (о них расскажу в другой статье).

Все современные облачные хостинги работают по такому же принципу, т.е. хостер на хорошем железе поднимает кучу виртуальных серверов, которые мы привыкли называть VPS/VDS, и раздаёт их пользователям, либо автоматизирует этот процесс (привет, DigitalOcean).

KVM (kernel-based virtual machine) это программное обеспечения для Linux, использующее аппаратные средства x86-совместимых процессоров для работы с технологией виртуализации Intel VT/AMD SVM.

Установка KVM

Все махинации по созданию виртуальной машины я буду проводить на ОС Ubuntu 16.04.1 LTS. Чтобы проверить поддерживает ли ваш процессов аппаратную виртуализацию на базе Intel VT/AMD SVM, выполняем:

Grep -E "(vmx|svm)" /proc/cpuinfo

Если терминал непустой, то значит всё в порядке и KVM можно устанавливать. Ubuntu официально поддерживает только гипервизор KVM (входит в состав ядра Linux) и советует использовать библиотеку libvirt в качестве инструмента по управлению им, что мы и будем делать дальше.

Проверить поддержку аппаратной виртуализации в Ubuntu также можно через команду:

В случае успеха, вы увидите что-то вроде этого:

INFO: /dev/kvm exists KVM acceleration can be used

Устанавливаем пакеты для работы с KVM:

Sudo apt-get install qemu-kvm libvirt-bin ubuntu-vm-builder bridge-utils

Если у вас есть доступ к графической оболочке системы, то можно установить GUI менеджер libvirt:

Sudo apt-get install virt-manager

Пользоваться virt-manager достаточно просто (не сложнее VirtualBox), поэтому в этой заметке речь пойдёт про консольный вариант установки и настройки виртуального сервера.

Установка и настройка виртуального сервера

В консольном варианте установки, настройки и управлением системой, незаменимым инструментом является утилита virsh (надстройка над библиотекой libvirt). У неё большое количество опций и параметров, подробное описание можно получить так:

Man virsh

или вызвать стандартный "help":

Virsh help

Я всегда придерживаюсь следующих правил при работе с виртуальными серверами:

  1. Храню iso образы ОС в каталоге /var/lib/libvirt/boot
  2. Храню образы виртуальных машин в каталоге /var/lib/libvirt/images
  3. Явно задаю каждой новой виртуальной машине свой статичный IP адрес через DHCP сервер гипервизора.

Приступим к установке первой виртуалки (64-битной серверной убунте 16.04 LTS):

Cd /var/lib/libvirt/boot sudo wget http://releases.ubuntu.com/16.04/ubuntu-16.04.1-desktop-amd64.iso

Скачав образ запускаем установку:

Sudo virt-install \ --virt-type=kvm \ --name ubuntu1604\ --ram 1024 \ --vcpus=1 \ --os-variant=ubuntu16.04 \ --hvm \ --cdrom=/var/lib/libvirt/boot/ubuntu-16.04.1-server-amd64.iso \ --network network=default,model=virtio \ --graphics vnc \ --disk path=/var/lib/libvirt/images/ubuntu1604.img,size=20,bus=virtio

Переводя все эти параметры на "человеческий язык", то получается, что мы создаём виртуальную машину с ОС Ubuntu 16.04, 1024 МБ ОЗУ, 1 процессором, стандартной сетевой картой (виртуальная машина будет ходить в интернет как-будто из-за NAT), 20 ГБ HDD.

Стоит обратить внимание на параметр --os-variant , он указывает гипервизору под какую именно ОС следует адаптировать настройки.
Список доступных вариантов ОС можно получить, выполнив команду:

Osinfo-query os

Если такой утилиты нет в вашей системе, то устанавливаем:

Sudo apt-get install libosinfo-bin

После запуска установки, в консоли появится вот такая надпись:

Domain installation still in progress. You can reconnect to the console to complete the installation process.

Это нормальная ситуация, продолжать установку мы будем через VNC.
Смотрим на каком порту он был поднят у нашей виртуалки (в соседнем терминале, например):

Virsh dumpxml ubuntu1604 ... ...

Порт 5900, на локальном адресе 127.0.0.1. Чтобы подключиться к VNC, необходимо использовать Port Forwarding через ssh. Перед тем как это сделать, убедитесь, что tcp forwarding разрешён у демона ssh. Для этого идём в настройки sshd:

Cat /etc/ssh/sshd_config | grep AllowTcpForwarding

Если ничего не нашлось или вы видите:

AllowTcpForwarding no

То правим конфиг на

AllowTcpForwarding yes

и перезагружаем sshd.

Настройка Port forwarding

Выполняем команду на локальной машине:

Ssh -fN -l login -L 127.0.0.1:5900:localhost:5900 server_ip

Здесь мы настроили ssh port forwarding с локального порта 5900 на серверный порт 5900. Теперь уже можно подключиться к VNC, используя любой VNC-клиент. Я предпочитаю UltraVNC из-за простоты и удобства.

После успешного подключения, на экране отобразится стандартное окно приветствия начала установки Ubuntu:

После завершения установки и привычной перезагрузки, появится окно входа в систему. Авторизовавшись, определяем IP адрес новоиспечённой виртуалки, чтобы позже сделать его статичным:

Ifconfig

Запоминаем и идём на хост машину. Вытаскиваем mac-адрес "сетевой" карты виртуалки:

Virsh dumpxml ubuntu1604 | grep "mac address"

Запоминаем наш mac адрес:

Редактируем сетевые настройки гипервизора:

Sudo virsh net-edit default

Ищем DHCP, и добавляем вот это:

Должно получиться что-то вроде этого:

Для того, чтобы настройки вступили в силу, необходимо перезагрузить DHCP сервер гипервизора:

Sudo virsh net-destroy default sudo virsh net-start default sudo service libvirt-bin restart

После этого перегружаем виртуальную машину, теперь она всегда будет иметь заданный ей IP адрес - 192.168.122.131.

Есть и другие способы задать виртуалке статичный IP, например, напрямую редактируя сетевые настройки внутри гостевой системы, но тут уже как душе вашей будет угодно. Я лишь показал вариант, который сам предпочитаю использовать.

Чтобы подключиться к терминалу виртуальной машины, выполняем:

Ssh 192.168.122.131

Машина готова к бою.

Virsh: список команд

Чтобы посмотреть запущенные виртуальные хосты (все доступные можно получить добавив --all):

Sudo virsh list

Перезагрузить хост можно:

Sudo virsh reboot $VM_NAME

Остановить виртуальную машину:

Sudo virsh stop $VM_NAME

Выполнить halt:

Sudo virsh destroy $VM_NAME

Sudo virsh start $VM_NAME

Отключение:

Sudo virsh shutdown $VM_NAME

Добавить в автозапуск:

Sudo virsh autostart $VM_NAME

Очень часто требуется склонировать систему, чтобы в будущем использовать её как каркас для других виртуальных ОС, для этого используют утилиту virt-clone.

Virt-clone --help

Она клонирует существующую виртуалку и изменяет host-sensitive данные, например, mac address. Пароли, файлы и прочая user-specific информация в клоне остаётся прежней. Если на клонируемой виртуалке IP адрес был прописан вручную, то могут возникнуть проблемы с доступом по SSH на клон из-за конфликта (2 хоста с одинаковым IP).

Помимо установки виртуалки через VNC, также возможен вариант с X11Forwarding через утилиту virt-manager. В Windows, например, для этого можно использовать Xming и PuTTY.

KVM (виртуальная машина на основе ядра или Kernel-based Virtual) — бесплатное программное обеспечение для виртуализации с открытым исходным кодом. Вы можете создавать несколько виртуальных машин (VM), каждая виртуальная машина имеет свое собственное виртуальное оборудование, такое как диск, процессор, оперативная память и т. д. Он был включен в основную часть ядра Linux в версии 2.6.20 ядра.

Если вы ищете альтернативу VirtualBox , мы настоятельно рекомендуем использовать KVM. Мы также лично используем это удивительное программное обеспечение для виртуализации.

Установка KVM Ubuntu 17.04

Для установки KVM у вас должны быть следующие предварительные заготовки.

  1. Включите виртуализацию в системном BIOS.
  2. Проверьте системный CPU, если он поддерживает виртуализацию. Выполните приведенную ниже команду.

egrep — c ‘(vmx|svm)’ / proc / cpuinfo

Когда вы получаете вывод из вышеприведенной команды либо 1, либо более, это означает, что процессор поддерживает виртуализацию иначе 0 или менее означает, что она не поддерживает.

3. Проверьте архитектуру Ubuntu 16.04 LTS, выполнив одну команду i.e

X86_64 представляет собой 64-битное ядро.
I386, i486, i586 или i686 представляют собой 32-битное ядро.

32-разрядная ОС ограничена 2 ГБ ОЗУ максимально для данной виртуальной машины.
32-разрядное ядро ​​будет размещать только 32-битное гостевое ядро, тогда как в 64-битном ядре могут быть как 32-битные, так и 64-разрядные гостевые O.S.

Выполните шаги для установки KVM на Ubuntu

В этом разделе мы запишем шаги для установки KVM. В нашем предыдущем посте мы научились . Возможно, это также вам будет интересно.

1. Установка KVM Ubuntu 17.04 и других зависимых пакетов

В Ubuntu 17.04 LTS вы можете использовать команду apt или apt-get both. Здесь не будет различий в пакетах, установленных с помощью команды apt или apt-get, поэтому вы здесь хороши.

sudo apt update

sudo apt install qemu — kvm libvirt — bin bridge — utils

2. Узнайте о новых пользователях и группе для программного обеспечения KVM

После установки пакетов некоторые добавления будут происходить в количестве пользователей и групп.

(A) Создаются два пользователя.
— libvirt-qemu
— libvirt-dnsmasq

sharad@linuxworld :~ $ tail — 2 / etc / passwd

libvirt — qemu : x : 64055 : 129 : Libvirt Qemu ,:/ var / lib / libvirt : /bin/ false

libvirt — dnsmasq : x : 121 : 130 : Libvirt Dnsmasq ,:/ var / lib / libvirt / dnsmasq : /bin/ false

s harad@linuxworld :~ $

B) будут созданы две группы.

— kvm
— libvirtd

sharad@linuxworld :~ $ tail — 2 / etc / group

kvm : x : 129 :

libvirtd : x : 130 : sharad

sharad@linuxworld :~ $

Возможно, вы заметили, что используемый так называемый «шарад» является членом группы «libvirtd». Это означает, что этот пользователь может использовать KVM.

3. Проверьте установку KVM

Это довольно просто проверить установку KVM. Запустите команду —

virsh - c qemu : ///system list

В первый раз он покажет ошибку.

error : failed to connect to the hypervisor

error : Failed to connect socket to ‘/var/run/libvirt/libvirt-sock’ : Permission denied

sharad@linuxworld :~ $

Чтобы решить эту проблему, вы должны выйти и войти в систему на своем рабочем столе. Указывает, что текущий пользователь должен повторно войти в систему.

После входа в систему повторно запустите команду. На этот раз вы должны получить результат, как указано ниже. Он пуст, потому что не создается виртуальная машина.

sharad@linuxworld :~ $ virsh — c qemu : ///system list

Id Name State

—————————————————-

sharad@linuxworld :~ $

4. Установите Диспетчер виртуальных машин

Здесь мы используем Virtual Machine Manager, который представляет собой настольное приложение для управления виртуальными машинами KVM через libvirt.

Запустите эту команду для установки Диспетчера виртуальных машин.

sudo apt install virt — manager

Вы можете открыть Диспетчер виртуальных машин, введя его в Dash Home.Щелкните значок, он откроет приложение.

Чтобы открыть диспетчер виртуальных машин через командную строку, введите —

virt — manager

Ранее, когда мы установили KVM в Ubuntu 14.04 LTS Desktop, мы столкнулись с проблемой при создании первой виртуальной машины, но мы ее очень легко решили. В Ubuntu 16.04 LTS Desktop мы не обнаружили такой проблемы.

Если у Вас есть вопросы по теме «Установка KVM Ubuntu 17.04» - пишите их нам в форме для комментариев. Мы поможем вам разобраться в вашем вопросе намного быстрее.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

В Ubuntu рекомендуется использовать гипервизор (менеджер виртуальных машин) KVM и библиотеку libvirt в качестве инструментария управления им. Libvirt включает в себя набор программного API и пользовательских приложений управления виртуальными машинами (ВМ) virt-manager (графический интерфейс, GUI) или virsh (командная строка, CLI). В качестве альтернативных менеджеров можно использовать convirt (GUI) или convirt2 (WEB интерфейс).

В настоящее время в Ubuntu офицально поддерживается только гипервизор KVM. Этот гипервизор является частью кода ядра операционной системы Linux. В отличие от Xen, KVM не поддерживает паравиртуализацию, то есть, для того, чтобы его использовать, ваш CPU должен подерживать технологии VT. Вы можете проверить, поддерживает ли ваш процессор эту технологию, выполнив команду в терминале:

Если в результате получили сообщение:

INFO: /dev/kvm exists KVM acceleration can be used

значит KVM будет работать без проблем.

Если же на выходе получили сообщение:

Your CPU does not support KVM extensions KVM acceleration can NOT be used

то вы всё равно сможете использовать виртуальную машину, но работать она будет намного медленнее.

    Устанавливать в качестве гостевых 64-битные системы

    Выделять гостевым системам более 2 Гбайт ОЗУ

Установка

Sudo apt-get install qemu-kvm libvirt-bin ubuntu-vm-builder bridge-utils

Это установка на сервер без X-ов, т. е. не включает в себя графический интерфейс. Установить его можно командой

Sudo apt-get install virt-manager

После этого в меню появится пункт «Менеджер виртуальных машин» и, с большой долей вероятности, всё заработает. Если какие-то проблемы всё же возникнут, то нужно будет почитать инструкцию в англоязычной вики.

Создание гостевой системы

Процедура создания гостевой системы с помощью графического интерфейса достаточно проста.

А вот текстовый режим можно и описать.

qcow2

При создании системы с помощью графического интерфейса в качестве жёсткого диска предлагается либо выбрать уже существующий файл-образ или блочное устройсво, либо создать новый файл с сырыми (RAW) данными. Однако, это далеко не единственный доступный формат файлов. Из всех перечисленных в man qemu-img типов дисков наиболее гибким и современным является qcow2 . Он поддерживает снапшоты, шифрование и сжатие. Его необходимо создавать до того, как создать новую гостевую систему.

Qemu-img create -o preallocation=metadata -f qcow2 qcow2.img 20G

Согласно тому же man qemu-img , предварительное размещение метаданных (-o preallocation=metadata) делает диск изначально немного больше, но обеспечивает лучшую производительность в те моменты, когда образу нужно расти. На самом деле, в данном случае эта опция позволяет избежать неприятного бага. Создаваемый образ изначально занимает меньше мегабайта места и по мере необходимости растёт до указанного размера. Гостевая система сразу должна видеть этот окончательный указанный размер, тем не менее, на этапе установки она может увидеть реальный размер файла. Естественно, устанавливаться на жёсткий диск размером 200 кбайт она откажется. Баг не специфичен для Ubuntu, проявляется ещё в RHEL, как минимум.

Кроме типа образа впоследствии можно будет выбрать способ его подключения - IDE, SCSI или Virtio Disk. От этого выбора будет зависеть производительность дисковой подсистемы. Однозначно правильного ответа нет, выбирать нужно исходя из задачи, которая будет возложена на гостевую систему. Если гостевая система создаётся «на посмотреть», то сойдёт любой способ. Вообще, обычно именно I/O является узким местом виртуальной машины, поэтому при создании высоконагруженной системы к этому вопросу нужно отнестись максимально ответственно.